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1. Introduction

Any explanation of color confinement in terms of a dual symmetry, requires the existence

of field configurations with non trivial spatial homotopy Π2. This amounts to extend the

formulation of the theory to a spacetime with an arbitrary but finite number of line-like

singularities (monopoles) [1].

A prototype example of such configuration is the ’t Hooft - Polyakov monopole [2, 3] in

the SO(3) gauge theory interacting with a Higgs scalar in the adjoint color representation.

It is a static soliton solution made stable by its non trivial homotopy.

In the ”hedgehog” gauge the i-th color component of the Higgs field φ(r) = φi(r)σi at

large distances has the form

φi ≃ ri

|~r | (1.1)

and is a mapping of the sphere S2 at spatial infinity on SO(3)/U(1), with non trivial

homotopy. In the unitary gauge, where φi

|φ | = δi
3 σ3 is diagonal, a line singularity appears

starting from the location of the monopole.

The Abelian field strength of the residual U(1) symmetry in the unitary gauge is given

by

Fµν = ∂µA
3
ν − ∂νA

3
µ (1.2)

The monopole configuration has zero electric field (F0i = 0) and the magnetic field Hi =
1
2 ǫijkFjk is the field of a Dirac monopole of charge 2

~H =
1

g

~r

4πr3
+ Dirac String (1.3)
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In a compact formulation, like is lattice, the Dirac string is invisible and a violation of

Bianchi identity occurs

~∇ · ~H =
1

g
δ3(x) (1.4)

More formally, one can define a covariant field strength Fµν which coincides, in the unitary

gauge, with the abelian field strength of the residual symmetry [2]

Fµν = Tr(φ̂ Gµν) − i

g
Tr

(
φ̂ [Dµφ̂,Dν φ̂]

)
(1.5)

Here

φ̂ =
∑

φ̂aT a Gµν =
∑

Ga
µνT

a

φ̂a =
φa

|φa|
Dµφ̂ = ∂µφ̂+ ig[Aµ, φ̂]

T a are the group generators with normalization Tr(T aT b) = 1
2 δ

ab. Fµν is known as ’t

Hooft tensor. A magnetic current can be defined as

jν = ∂µF̃µν (1.6)

where F̃µν = 1
2ǫµνρσFρσ. A non zero value of it signals the violation of Bianchi identities.

Furthermore, the current defined in eq. (1.6) is identically conserved

∂νjν = 0 (1.7)

The main feature of eq. (1.5) is that linear and bilinear terms in Aµ, Aν cancel and one has

identically

Fµν = Tr

(
∂µ(φ̂Aν) − ∂µ(φ̂Aν) − i

g
φ̂[∂µφ̂, ∂ν φ̂]

)
(1.8)

In the unitary gauge, where φ̂ = (0, 0, 1) and ∂µφ̂ = 0, it reduces to eq. (1.2).

In a theory with no Higgs field a ’t Hooft tensor can be defined by choosing

φ = U(x)σ3U(x)† (1.9)

with U(x) any element of the group, for example the parallel transport to x from a fixed

arbitrary point at infinity. U(x)† is the gauge transformation to the unitary gauge.

Again a conserved magnetic current, identifying a dual symmetry, can be defined. In

principle any field φ in the adjoint representation can be used as effective Higgs: all of

them have the form of eq. (1.9) except for a finite number of singularities and differ from

each other by a gauge transformation defined everywhere except at singularities.

The generalization to SU(N) is designed in ref. [2] and developed in detail in ref. [4].

The strategy is to ask what fields φ would allow the definition of ’t Hooft tensor, with the

cancelations bringing from eq. (1.5) to eq. (1.8), so that it becomes the abelian residual

field strength in the unitary gauge.
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The answer is that there are N − 1 such fields (as many as the rank of the group), one

for each fundamental weight. Explicitly

φa(x) = U(x)φa
0U

†(x) (1.10)

with φa
0 the fundamental weight

φa
0 =

1

N
diag (N − a, . . . ,N − a︸ ︷︷ ︸

a

,−a, . . . ,−a︸ ︷︷ ︸
N−a

) (1.11)

(a = 1 . . . N−1). The invariance group of φa
0 is SU(a)×SU(N−a)×U(1) and the quotient

group SU(N)
SU(a)×SU(N−a)×U(1) has non trivial homotopy

Π2

(
SU(N)

SU(a) × SU(N − a) × U(1)

)
= Z

(for a more precise formulation see section 3 below). There exist N − 1 monopole species

for SU(N), one for each a.

To connect with the approach of ref. [5], if ψ(x) is a generic hermitian operator in the

adjoint representation, it can be diagonalized to ψ0(x). Since the maximal weights are a

complete set of traceless N ×N diagonal matrices, one has

ψ0(x) =
N−1∑

a=1

ca(x)φ
a
0 (1.12)

and

ψ(x) =

N−1∑

a=1

ca(x)φ
a(x) . (1.13)

ca(x) is the difference of two subsequent eigenvalues of ψ

ca(x) = ψ0(x)
a
a − ψ0(x)

a+1
a+1

and is equal to zero at the sites where two eigenvalues coincide and there a singularity

appears in the unitary gauge, corresponding to a monopole of species a sitting at x.

Recently some special groups like G2 and F4 became of interest, since they have no

center and seem to confine [6], in contrast with the idea that center vortices could be the

configurations responsible for confinement [7]. It is thus interesting to investigate monopole

condensation in these systems.

However, for the group G2 and F4 it proves impossible to construct a ’t Hooft tensor

of the form of eq. (1.5): no solution exists for φa, such that eq. (1.5), (1.8) are valid. Still,

as we shall see in the following, there are monopoles in these theories and it is possible to

define magnetic conserved currents. The approach sketched above, which works for SU(2)

and SU(N), has to be modified for a more general construction of a ’t Hooft like tensor.

We approach and solve this problem in the present paper.

We will consider theories like QCD (gluons plus at most quarks) with a generic compact

gauge group and no Higgs fields: we shall only use a Higgs field in the adjoint representation

as a tool to classify the dual symmetry. In particular, we shall not consider supersymmetric

extensions.

– 3 –



J
H
E
P
1
0
(
2
0
0
8
)
0
9
6

2. Monopoles

Let G be a gauge group, which we shall assume to be compact and simple. To define a

monopole current we have to isolate an SU(2) subgroup, and break it to its third component,

say T3. This will be done by some ”Higgs field” φ in the adjoint representation.

Our notation is the familiar one (see e.g. [8, 9]). There are r commuting generators

of G (r=rank of group) which we shall denote as Hi (i = 1, . . . , r). The other generators

occur in pairs with opposite values of Cartan eigenvalues:

[Hi,Hj ] = 0 [Hi, E± ~α ] = ±αiE± ~α

[E ~α, E~β
] = N

~α, ~β
E

~α+~β
[E~α, E−~α ] = αiHi (2.1)

where ~α = (α1, . . . , αr) and Nα, β 6= 0 only if ~α + ~β is a root. The root ~α can be taken

positive (− ~α negative). By definition, a root is positive if its first nonzero component is

positive: either ~α or −~α is positive. Of course the choice is conventional and also depends

on the choice for the order of components. A positive root is called simple if it cannot be

written as the sum of two other positive roots.

The way to associate an su(2) algebra to each root is a trivial renormalization of E±~α.

Defining

Tα
± =

√
2

(~α·~α)E±~α Tα
3 = ~α· ~H

(~α·~α)

we have

[Tα
3 , T

α
± ] = ±Tα

± [Tα
+ , T

α
−] = 2Tα

3

A Weyl transformation is an invariance transformation of the algebra which permutes the

roots [8, 9]. It can be proved that any root can be made a simple root by a Weyl transfor-

mation ([8] III.10 pg.51). Furthermore it can also be proved that the Weyl transformations

are induced by transformations of the group G ([9] VIII.8 pg.193). If the Higgs poten-

tial is invariant under G, we can then consider without loss of generality only the SU(2)

subgroups related to the simple roots.

A vev of the field φ proportional to any of the fundamental weights µi, i = (1, . . . , r),

corresponding to the i-th simple root, identifies a monopole.1 Indeed recall that

µi = ~c i · ~H [µi, T j
±] = ±~ci · ~αj T

j
± = ± δij T

j
±

Taking

µi = T i
3 + (µ i − T i

3 ) (2.2)

the last term commutes with T i
±, T i

3

[µ i, T j
± ] = ± δij T

j
± [µ i, T j

3 ] = 0 [T i
3 , T

j
± ] = ± δij T

j
± (2.3)

1This kind of breaking is called maximal and identifies r magnetic charges, one for each fundamental

weight. Configurations carrying a non zero value of more than one of this charge (non maximal breaking)

exist [10], but they don’t add any new information concerning the symmetry.
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The little group of φi, H̃, is the product of the U(1) generated by µ i times a group H which

has as Dynkin diagram the diagram (connected or not connected) obtained by erasing from

the diagram of G the root αi and the links which connect it to the rest (Levi subgroup):

H̃ = H × U(1) (2.4)

Indeed φ=µ icommutes with all the simple roots different from αi and of course with theHi.

The ’t Hooft tensor will be, by definition, a gauge invariant tensor which coincides with

F i
µν = ∂µA

3
ν − ∂νA

3
µ (2.5)

in the unitary gauge in which φi is diagonal. The index 3 labels the component along T i
3,

the diagonal generator of the broken SU(2). As we did for the case of SU(2), we will define

r magnetic currents jiµ as

jiµ = ∂ν F̃
i
µν (2.6)

∂µjiµ = 0 (2.7)

and the corresponding magnetic charges

Qi =

∫
d3xji0(~x, t). (2.8)

The index i runs from 1 to r, the rank of the group . The analogue for this breaking of

the ’t Hooft-Polyakov solution [2, 3], in presence of a Higgs field, would be

Ai
k = Am

k (~r)T i
m, φ(~r)i = χm(~r)T i

m + (µ i − T i
3 ) (2.9)

where

Am
k (~r) = g(r)ǫmkj

rj

r2
, χm(~r) =

rm

r
χ(r)

g(∞) = 1 χ(∞) = 1 (2.10)

It is a solution like that of ref. [2, 3] inside the SU(2) subgroup generated by T i
±, T i

3 . The

index m indicates color, while the indices k, j space directions and the index i refers to the

simple root chosen. It is straightforward to verify that this monopole is charged under the

magnetic U(1) generated by T i
3. A complete geometric classification of the configurations

in term of magnetic charges will be given in the next section.

3. Monopole charge and homotopy

Monopole configurations can be classified in terms of the second homotopy group Π2(G/H̃).

In the following we will use the relationship [11]

π2(G/H̃) ≃ ker[π1(H̃) → π1(G)] (3.1)

– 5 –
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and we will compute π1(H̃) following the formulation of [12]. We consider two gauge fields,

respectively defined on north (0≤θ≤π/2) and south (π/2≤θ≤π) hemisphere, of the form

A±
ϕ = ± g T3(1 ∓ cos θ), (3.2)

with ϕ the azimuthal direction. A+
ϕ is defined on the north hemisphere and A−

ϕ in the

south one. T3 is the third component of the broken SU(2).

On the equator this two solutions must be transformed one into each other by a gauge

transformation of the form

Ω = exp(i 2 e g T3 ϕ) (3.3)

which is single-valued if

exp(i 4π e g T3) = 1 (3.4)

In the simple case of G = SU(2) and H̃ = U(1), eq. (3.4) gives the Dirac quantization

condition

g =
n

2e
(3.5)

Monopoles are identified by an integer n, the winding number on H̃ = U(1) group. Indeed

Π2(SU(2)/U(1)) = Π1(U(1)) = Z (3.6)

For a generic gauge group G the discussion turns out to be more involved, since the analysis

of Π2(G/H̃) is related to the global (topological) structure of G and H̃ which in general

cannot be inferred from their Lie algebras.

In general

H̃ =
H × U(1)

Z
(3.7)

where Z is a subgroup of the center of H ×U(1). This happens when the identity of G can

be written not only as the identity of H times the identity of U(1) but also as an element

of U(1) times a non trivial element z of H. Since U(1) commutes with H, z must commute

with all elements of H and hence it belongs to its center. Mathematically speaking, Z is

the kernel of the map Φ : H × U(1) → G.

For example, for G = SU(N), one can check that the residual invariance group is

H̃ =
SU(a) × SU(N − a) × U(1)

Zk
(3.8)

where k is the mcm between a and N − a. The third component of the broken SU(2) is

T3 = diag(0, . . . , 1,−1, . . . , 0), (3.9)

so that the usual Dirac quantization g = n
2e

, in terms of the minimal electric charge [13, 14],

follows from eq. (3.4). Monopole configurations are labeled by an integer n.

To see the correspondence between the U(1) magnetic charges and the non-contractible

loops on H̃, we substitute the value of eg as determined from eq. (3.4) into eq. (3.3) ob-

taining

Ω = exp(i n T3 ϕ) (3.10)
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Magnetic charges (with various n) are associated to loops that wind n-times on magnetic

U(1), the subgroup generated by T3.

From the point of view of the H̃ group, every monopole charge is in one-to-one corre-

spondence with a loop that starts from identity, moves inside the U(1) to an element of the

center of SU(a)×SU(N−a) and comes back to identity along a path into SU(a)×SU(N−a).
Algebraically one can write (see eq. (2.2)) [13, 14]:

T3 = φ+ h (3.11)

with

φ = diag

(
1

a
, . . .

1

a
, − 1

N − a
, . . . − 1

N − a

)
(3.12)

h = diag

(
−1

a
, . . .

a− 1

a
,
a+ 1 −N

N − a
, . . .

1

N − a

)
(3.13)

where φ is the effective Higgs and h is an element of the Cartan subalgebra of H. By use of

formula (3.10), we easily recognize that the loops in the U(1) with winding number L cor-

respond to magnetic charges n = Lk since, for ϕ = 2π, ei 2π φ L k = I. Charges of the form

n = q + Lk q 6= 0 (3.14)

are associated to loops that go inside U(1) from identity to

exp (iφ 2π q) = exp

(
2πiq

a
. . .

2πiq

a
, − 2πiq

N − a
. . . − 2πiq

N − a

)
, (3.15)

an element of the center of SU(a)×SU(N−a), and come back through the SU(a)×SU(N−a)
part (modulo an integer number L of winding inside the U(1)). It follows that each value of

the magnetic charge uniquely corresponds to an element of Π1(H̃). The Dirac quantization

condition is always satisfied in terms of the minimal charge [13, 14]. This statement can

be shown to hold for all the monopoles corresponding to the symmetry breakings listed in

the table 12 In section 4.2 we will study the case of the G2 group in detail.

In the cases where G is not simply connected (e.g. in the ’t Hooft - Polyakov solitonic

solution G = SO(3) → U(1)) we must exclude the non contractible paths inside G and this

fact restricts the allowed values for the magnetic charge.

The one-to-one correspondence between magnetic charges and elements of π1(H̃) allows

to classify every topological configuration in terms of the magnetic charge which is defined

in terms of the ’t Hooft tensor (eq. (1.6), (1.7)). The explicit construction of the tensor

will be the main goal of the next section.

4. The ’t Hooft tensor

4.1 Construction

The ’t Hooft tensor is a gauge invariant tensor which coincides with the residual abelian

field strength in the unitary gauge. The magnetic field associated to the i-th monopole is

2We have checked this issue explicitly for the non exceptional groups and for G2. For F4, E6, E7 and

E8 it is a conjecture.
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G H × U(1) λI Π2(G/H̃)

SU(n) SU(n−m) × SU(m) × U(1) 1 Z

SO(2n + 1) SO(2n− 1) × U(1) 1 Z

SO(2n + 1) SO(2m+ 1) × SU(n −m) × U(1) 1,4 Z

SO(2n + 1) SU(n) × U(1) 1,4 Z/Z2

SO(2n) SO(2n − 2) × U(1) 1 Z

SO(2n) SO(2m) × SU(n−m) × U(1) 1,4 Z

SO(2n) SU(n− 2) × SU(2) × SU(2) × U(1) 1,4 Z/Z2

SO(2n) SU(n) × U(1) 1 Z/Z2

Sp(2n) Sp(2m) × SU(n−m) × U(1) 1,4 Z

Sp(2n) SU(n− 1) × SU(2) × U(1) 1,4 Z

Sp(2n) SU(n) × U(1) 1 Z

G2 SU(2) × U(1) 1,4,9 Z

G2 SU(2)′ × U(1) 1,4 Z

F4 Sp(6) × U(1) 1,4 Z

F4 SU(3) × SU(2) × U(1) 1,4,9 Z

F4 SU(3)′ × SU(2)′ × U(1) 1,4,9,16 Z

F4 Spin(7) × U(1) 1,4 Z

E6 Spin(10) × U(1) 1 Z

E6 SU(5) × SU(2) × U(1) 1,4 Z

E6 SU(6) × U(1) 1,4 Z

E6 SU(3) × SU(3) × SU(2) × U(1) 1,4,9 Z

E7 Spin(12) × U(1) 1,4 Z

E7 SU(7) × U(1) 1,4 Z

E7 SU(6) × SU(2) × U(1) 1,4,9 Z

E7 SU(4) × SU(3) × SU(2) × U(1) 1,4,9,16 Z

E7 SU(5) × SU(3) × U(1) 1,4,9 Z

E7 Spin(10) × SU(2) × U(1) 1,4 Z

E7 E6 × U(1) 1 Z

E8 Spin(14) × U(1) 1,4 Z

E8 SU(8) × U(1) 1,4,9 Z

E8 SU(7) × SU(2) × U(1) 1,4,9,16 Z

E8 SU(5) × SU(3) × SU(2) × U(1) 1,4,9,16,25,36 Z

E8 SU(5) × SU(4) × U(1) 1,4,9,16,25 Z

E8 Spin(10) × SU(3) × U(1) 1,4,9,16 Z

E8 E6 × SU(2) × U(1) 1,4,9 Z

E8 E7 × U(1) 1,4 Z

Table 1: Symmetry breaking of a generic compact group [First column] to the residual subgroup

H̃ × U(1) (modulo Z factors)[2nd column], the corresponding values of λI [third column] and the

Homotopy group Π2(G/H). Notation: Spin(N) indicates the covering group of SO(N).
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that of the group U(1)i generated by T i
3 . We can define the e.m. field Ai

µ in terms of the

gauge field A′
µ in the unitary gauge as:

Ai
µ = Tr(φi

0A
′
µ). (4.1)

φi
0 = µi, the fundamental weight (i = 1, . . . , r), identifies the monopole species. If b(x) is the

gauge transformation bringing to a generic gauge and Aµ the transformed gauge field [15]





A′
µ = bAµb

−1 − i
g
(∂µb)b

−1

φi
0 = bφib−1

(4.2)

the e.m. field can be written as:

Ai
µ = Tr(φi(Aµ + Ωµ)) (4.3)

where Ωµ = − i
g b

−1∂µb. We can rewrite the abelian field strength as

F i
µν = Tr(φiGµν) + i g Tr(φi [Aµ + Ωµ, Aν + Ων ]) (4.4)

Because of the ciclycity of the trace only the part of Aµ + Ωµ which does not belong to the

invariance group of φi contributes. Indeed, denoting for the sake of simplicity as Vµ the

vector Aµ + Ωµ,

Tr(φi[Vµ, Vν ]) = Tr (Vν [φi, Vµ]) = Tr (Vµ[Vν , φ
i]) (4.5)

To compute the second term in eq. (4.4) it proves convenient to introduce a projector P

on the complement of the invariance algebra of φi . If we write Vµ as

Vµ =
∑

~α

V ~α
µ E

~α +
∑

j

V j
µH

j (4.6)

where the sum on ~α is extended to all positive and negative roots and the sum on j on

all elements of Cartan algebra (j = 1, . . . , r), we can certainly neglect the last term, which

commutes with φi. Moreover the generic E~α is part of the little group of φi whenever

[φi, E~α] = (~c i · ~α)E~α = 0 (4.7)

If instead (~c i · ~α) 6= 0, E~α belongs to the complement. It is trivial to verify that projection

on the complement P i Vµ is given by

P iVµ = 1 −
′∏

~α

(
1 − [φi, [φi, ]]

(~c i · ~α)2

)
Vµ (4.8)

where [φi, ]Vµ = [φ, Vµ] and the product
∏′

~α runs on the roots ~α such that ~c i · ~α 6= 0 and

only one representative is taken of the set of the roots having the same value of ~c i · ~α.

Indeed if any element E~α in eq. (4.6) commutes with φi, P iE~α = (1 − 1)E~α = 0. If

for any E~α

[φi, E~α] = (~c i · ~α)E~α (~c i · ~α) 6= 0 (4.9)

– 9 –
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one of the factors
(
1 − [φi,[φi ]]

(~c i·~α)2

)
in the definition eq. (4.8) will give zero and PE~α = E~α. In

order to simplify the notation we denote by λi
I the different non zero values which (~c i · ~α)2

can assume and rewrite P iVµ as

P iVµ = 1 −
∏

I

(
1 − [φi, [φi, ]]

λi
I

)
Vµ (4.10)

Eq. (4.4) can be rewritten as

F i
µν = Tr(φiGµν) + igTr(φi [P i (Aµ + Ωµ) , Aν + Ων ]) (4.11)

For our purpose it is sufficient to project only one of the operators in the commutator. By

use of eq. (4.10) and recalling that

Dµφ
i = −ig[Aµ + Ωµ , φ

i ] (4.12)

the generalized ’t Hooft tensor reads as

F i
µν = Tr(φiGµν) − i

g

∑

I

1

λi
I

Tr
(
φi[Dµφ

i,Dνφ
i]
)

+

+
i

g

∑

I 6=J

1

λi
Iλ

i
J

Tr
(
φi[[Dµφ

i, φi], [Dνφ
i, φi]]

)
+ · · · (4.13)

To summarize, we have to compute for each root ~α the (known) commutator [φi, E~α] =

(~c i · ~α)E~α, where φi are the fundamental weights associated to each simple root. This

will give us the set of the values of λi
I to insert into eq. (4.13). For SU(N) group

[φi, E~α] = (~c i · ~α)E~α, where (~c i · ~α) = 0,±1, so the projector is simply

P iVµ = [φi, [φi, Vµ]] (4.14)

and the ’t Hooft tensor is the usual one

F i
µν = Tr(φiGµν) − i

g
Tr(φi[Dµφ

i,Dνφ
i]) (4.15)

For a generic group the projector is more complicated and it can depend on the root chosen.

Results are listed in table 1.

4.2 ’t Hooft tensors for G2

We now specialize the above results to the case of gauge group G2. It is natural to view

G2 as a subgroup of SO(7) [6]. In fact G2 is the subgroup of the 7× 7 orthogonal matrices

Ω which satisfy the relations

Tabc = TdefΩdaΩebΩfc (4.16)

Tabc is a totally antisymmetric tensor whose non-zero elements are given by

T127 = T154 = T235 = T264 = T374 = T576 = 1

According to section 2, we consider the breaking of G2 to a subgroup SU(2)×U(1). Dynkin

diagram of G2 is depicted as follow
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where the first circle corresponds to the longest simple root e1 and the second one to the

other e2. The residual invariance group is obtained by erasing one of the two roots in turn.

It’s Dynkin diagram consists of one single circle, which means H = SU(2). The explicit

form of the generators of these residual SU(2) subgroups is, in the notation of [6],

T
(1)
+ = (|1〉〈2| − |5〉〈4|) T

(1)
− = (|2〉〈1| − |4〉〈5|)

T
(1)
3 = ( |1〉〈1| − |2〉〈2| − |4〉〈4| + |5〉〈5|)
T

(2)
+ = |3〉〈5| − |2〉〈6| −

√
2|7〉〈1| −

√
2|4〉〈7|

T
(2)
− = |5〉〈3| − |6〉〈2| −

√
2|1〉〈7| −

√
2|7〉〈4|

T
(2)
3 = −2|1〉〈1| + |2〉〈2| + |3〉〈3| + 2|4〉〈4| − |5〉〈5| − |6〉〈6|

• If we break the simple root e1 we have as little group SU(2) × U(1) and the corre-

sponding maximal weight reads

φ
(1)
0 = diag(0,−1, 1, 0, 1,−1, 0) (4.17)

The coefficients (λ
(1)
I ) are equal to 1, 4. By using eq. (4.13) ’t Hooft tensor reads

F (1)
µν = Tr(φ(1)Gµν) − 5i

4g
Tr

(
φ(1)[Dµφ

(1),Dνφ
(1)]

)
+

+
i

4g
Tr

(
φ(1)[[Dµφ

(1), φ(1)], [Dνφ
(1), φ(1)]]

)
(4.18)

More precisely the invariance subgroup is SU(2)×U(1)
Z2

. Indeed, if we write T
(1)
3 as

T
(1)
3 = diag(1,−1, 0,−1, 1, 0, 0) =

φ
(1)
0

2
+ h (4.19)

where h is

h = diag(1,−1/2,−1/2,−1, 1/2, 1/2, 0) (4.20)

we can see that, when magnetic charge are even integers, the corresponding loops

wind only in the U(1), while for odd integers the loops travel partly in U(1), from

identity to the non-trivial element of the center of SU(2), and the rest in the non-

abelian SU(2) subgroup.

• If we break the other simple root e2 we have as little group SU(2)′ × U(1) and the

correspondent maximal weight reads

φ
(2)
0 = diag(−1,−1, 2, 1, 1,−2, 0) (4.21)

with (λ
(2)
I ) = 1, 4, 9. These values of coefficients give us a ’t Hooft tensor of the form

F 2
µν = Tr(φ(2)Gµν) − 49i

36g
Tr

(
φ(2)[Dµφ

(2),Dνφ
(2)]

)
+
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+
7i

18g
Tr

(
φ(2)[[Dµφ

(2), φ(2)], [Dνφ
(2), φ(2)]]

)

− i

36g
Tr

(
φ(2)[[[Dµφ

(2), φ(2)], φ(2)], [[Dνφ
(2), φ(2)], φ(2)]]

)
(4.22)

Similarly to the previous case the residual gauge group is SU(2)×U(1)
Z2

and for even

charges loops wind only on U(1), while for odd charges loops run partly in U(1) and

the rest in SU(2).

5. Discussion

The experimental limits on the observation of free quarks in nature indicate that confine-

ment is an absolute property, in the sense that the number of free quarks is strictly zero due

to some symmetry. Deconfinement is a change of symmetry. Since color is an exact sym-

metry, the only way to have an extra symmetry, which can be broken, is to look for a dual

description of QCD. The extra degrees of freedom are infrared modes related to boundary

conditions. This is a special case of the so called geometric Langlands program of ref. [1].

The relevant homotopy in 3+1 dimensions is a mapping of the two dimensional sphere

S2 at spatial infinity onto the group. The homotopy group is thus Π2, configurations are

monopoles [2, 3] and the quantum numbers magnetic charges.

For a generic gauge group of rank r there exist r different magnetic charges Qa labelling

the dual states. The existence of magnetic charges implies a violation of Bianchi identities

by the abelian gauge field coupled to them. The gauge invariant abelian field strength

coupled to Qa is known as ’t Hooft tensor. In this paper we analyzed monopoles in a generic

compact gauge group and we explicitly constructed the corresponding ’t Hooft tensor.
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